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ABSTRACT

This paper investigates the control of chaotic oscillatator, viz. Colpitts
chaotic oscillator by adaptive feedbackcontrol method. Our theorem on
control for Colpitts oscillatior is established using Lyapunov stability
theory. The adaptive feedback scheme links the choice of a Lyapunov
function with the design of a controller. The adaptive control is conve-
nient to estimate unknown parameters in chaotic systems. In practical
there is no derivative existing in controller part, so it reduces the cost of
controller design. Numerical simulations are also given to illustrate and
validate the results derived in this paper.
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1. Introduction

Chaotic dynamical systems are described by nonlinear differential equations
and it can be strongly sensitive to initial conditions (Alligood and Yorke, [1997]
Baker and Gollub, 1996 |Ott}, 2002).

Chaos theory has been applied in many fields such as mathematics, com-
puter sciences (Murali and Lakshmaman) 2003)), ecology, chemistry (Coffman
et al., [1987), physical science(Zhang} |2005) , population dynamics (Rao et al.
2015) and robotics, etc (Blasius et al., (1999, [Chen| 2008| [Chen et al., 2009
Ghosh et al] [2008| [Han et al.] [1995| [Kakmeni et al, [2006] [Kocarev], [1995] Lak-|
shmanam and Murali [Murali and Lakshmaman) 2003, [Ott et al. [1990,

Park and Kwonl 2003, [Yang et al.,[2009, [Yang and Cao, 2010, Zhao| [2009) .

In recent years, various control techniques have been deployed to carry con-
trol the chaotic systems such as PC method (Pecora and Carroll, 1990, 1991)),
OGY method 2002), sample-data feedback method, sliding mode control
method (Che et al.| 2010} [Yal 2004)), backstepping control method (Suresh and
Sundarapandian, 2012ajblc, Wu and Lul 2003} [Yu and Zhang| 2006)), active
nonlinear control method (Rasappan et al.| 2015, Sundarapandian and Sureshl
2010), delayed feedback control method (Park and Kwonl, 2003), etc.

Recently, nonlinear feedback control techniques have been taken much at-
tention in controlling the chaotic systems. In this method, the controller tracks
the unstable periodic orbit to stable periodic orbit and estimates the unknown
parameters in chaotic systems.

This paper is organized as follows. In section 2, the result for adaptive feed-
back control system is derived. In section 3, the Colpitts oscillator
and its application are clearly defined. In section 4, the adaptive feed-
back control for Colpitts oscillator is derived, the adaptive feedback control is
derived using Lyapunov stability theory. The proposed adaptive feedback con-
trol is very simple and effective to implement in application sides. Conclusions
are contained in final section.

2. Problem Statement and Methodology

Consider the chaotic system described by the dynamics

&t = Ax+ f(x)+aas+u (1)

50 Malaysian Journal of Mathematical Sciences



“suresh” — 2016/1/5 — 8:37 — page 51 — #3

Control of Colpitts-Oscillator via Adaptive Feedback Control

where x € R" is the state of the system, A is the n X n matrix of the system
parameter, the matrix A have some unknown parameters, f: R — R™ is
the nonlinear part of the system, u € R™ is the adaptive nonlinear feedback
controller. a4 is the estimator of unknown parameter.

The global control problem is essentially to find adaptive feedback controller
uand é4, so as to stabilize the dynamics (1)) for all initial conditions z(0) € R™,
i.e.

lim [[z(#)[| = 0

t—o00

for all initial conditions z(0) € R™ Lyapunov function methodology is used for
establishing the adaptive feedback control of the system .

By the Lyapunov function methodology, a candidate Lyapunov function is
taken as
V(z) = 2TPx+adiPiag (2)

where P, P, are n X n positive definite matrix

Note that V: R™ — R™ is a positive definite function by construction. It is
assumed that the parameters of the system are measurable.

If a controller u and &4 can be found such that
V(z)=—27Qx — aLQran (3)

where (), Q1 are positive definite matrix,then V(x) is a negative definite func-
tion.

Hence, by Lyapunov stability theory (Hahn, [1967), the dynamics is
globally exponentially stable and hence the condition

Jim [l2(t)]| =0

will be satisfied for all initial conditions x(0) € R™.

Then the states of the system will be globally exponentially stable.

3. System Description

Colpitts oscillators are generally used to generate periodical signals. The
bipolar junction transistor gives the chaotic nature in Colpitts oscillator (Kennedy),
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1994). Colpitts oscillators are using it for lighting the fluorescent lamp and ap-
plied to generate a carrier signals at the transmitters.

The state space representation of Colpitts oscillators is

= my— f(x3)
(tg = CcC— X —bIIJQ — X3 (4)
j?3 = X9 — d

where
—a(zs+1) z3< -1

f(‘"”3):{ 0 z3 > —1

and x1, x9, x3 are the state variables and a, b, ¢, d are positive constants. The
system is chaotic when the parameters are chosen as

a=81.41, b=0.82, ¢="7.14,and d = 0.73

Figure [3] shows the state orbit of Colpitts-oscilattor.

4. Control of Colpitts- Oscillator via Adaptive
Feedback Control

The Colpitts- oscillator dynamics (Kennedy, [1994)) is described by

¥ = xa— f(z3) +w
1»"2 = C—$1—b$2—$3+“2 (5)
1:3 = I27d+U3

where ( )
. —a(xs+1 r3 < —1
f(xB) a { 0 3 > —1
and z1, o, x3 are the state variables and a, b, c¢,d are positive unknown
constants.
In this paper, we introduce the adaptive feedback procedure to design the
controllers uq, ug, us.

Where w1, us, us is control inputs, which are the function the state variables
1,22, x3 and unknown estimator «g, ap, ., q. As long as these feedbacks
stabilize system converge to zero as the time t goes to infinity. That means
that, this gives the system

lim ||z (t)] = 0.

t—o0
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Figure 1: State Orbit of Colpitts- Oscillator
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Figure 2: State Orbit of Colpitts- Oscillator

4.1 Case 1 When z3 < —1

The dynamics of the collpits oscillator is described by the equation

T
T
x3

zo +a(zs + 1)+ uy
c—x1 — by — x3 + U (6)
$2—d+U3

where x1, x5, x3 are the state variables and a, b, ¢,d are positive unknown

constants.

The candidate Lyapunov function is taken as

V(l‘l; Z2,x3,0q, Oéb7O[C,Ozd) = %ZE% + %‘T% —+ %-’17%"‘ (7)
300 + 3045 + 302 + 305
Let define the parameter estimation as
Qo=a—a, ap=b—0b, a.=c—¢ ag=d—d (8)

Differentiating along the trajectories of the system @ and , the simple

calculation gives
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vV o= x1 (22 +.a(:cl +1) + up) + xg(q —x1 — be. —x3 + ug) + x3(xre — d + us)
+aa(_da) + ab(_db) + ac(_dc) + ad(_&d)
(9)

The adaptive feedback control is defined by

Uy = —1‘2—&1‘3—&—331
Uy = 7é+£€1 +b$2 +I3 — X9 (10)
us = —To+ d— I3

The parameters are updated by the updating law

O?a = 1’1(1+1’3)+0[a
Gy = —wrta (11)
é‘c = Ta+ e
g = —T3+ayg
Substituting equation and in @D, then its implies that
V=-—a}-a}-22-0a?-al—a?—-a? (12)

which is a negative definite function.

Hence, by Lyapunov stability theory (Hahn| |1967)), the Colpitts-oscillator
@ is globally exponentially stable.

Theorem 4.1. The chaotic Colpitts-oscillator @ is globally exponentially sta-
ble with the adaptive feedback control (10) and the unknown parameter estima-
tor .

4.2 Case 2 when z3 < —1

The dynamics of the collpits oscillator is described by the equation

T1 = To+up
i’g = C— I 7bl‘2 75634’11,2 (13)
i’g = X2 — d—+ us

where x1, xo, x3 are the state variables and a, b, ¢, d are positive unknown
constants.

The candidate Lyapunov function is taken as

2 1,.2 1.2
V(Il,fﬂg,xg,aa,ab, O, Oéd) 57 + 51'2 + §$3
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Let define the parameter estimation as

Qo=a—a, ap=b—b, ac=c—¢ ag=d—d (15)

Differentiating along the trajectories of the system and , the sim-
ple calculation gives

V = xl(xQ +.’U,1)+I'2(C.f 1 7b1’2.7 IZ’3+U2).+$3(1’27€Z+’UJ3) (16)
+aa(_da) + ab(_db) + ac(_dc) + ad(_dd)
The adaptive feedback control is defined by
U7 = —T2 — X1
Uy = —¢+x1+brs+x3— 9 (17)
us = —X9 + d — X3
The parameters are updated by the updating law
G = ag
G = -2+ (18)
&, = T+ Q.
Gqg = —x3+ayg
Substituting equation and in , then its implies that
V=—z?-22-22-0%—0a?—0a®-0d> (19)

which is a negative definite function.

Hence, by Lyapunov stability theory (Hahn, [1967)), the Colpitts-oscillator
@ is globally exponentially stable.

Theorem 4.2. The chaotic Colpitts-oscillator is globally exponentially
stable with the adaptive feedback control and the unknown parameter esti-

mator (@

5. NUMERICAL SIMULATION

For the numerical simulations, the fourth order Runge-Kutta method is
used to solve the differential equations with the adaptive feedback controls

u given by and .
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The parameters of the Colpitts-oscillators is chosen as
a=281.41,b=0.82,¢c = 7.14andd = 0.73

so that the system are chaotic.

The initial values of the system are chosen as
x1(0) = 24.1,25(0) = 15.5,23(0) = 16.8
The initial values of the estimated parameters are

ag =5, = 10, a, = 20, ag = 30.

Figure (3) shows the control Colpitts-oscillators .

Figure 3: the control of Colpitts-oscillators

Figure (4) describes the unknown estimator of Colpitts-oscillators ().

6. CONCLUSION

In this paper, adaptive feedback control method has been applied to achieve
control the Colpitts chaotic oscillators ([16]). The advantage of this method is
a systematic procedure for synchronizing chaotic system and there is no deriva-
tive in controller. The adaptive feedback control design has been deployed to
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8,5 78141

abcd

unknown estimators

Figure 4: The estimator of the unknown parameters

Colpitts-oscillator. Numerical simulations have been given to illustrate and val-
idate the effectiveness of the proposed control schemes of the chaotic systems.
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